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a b s t r a c t

The twenty-first century is certainly in progress by now, but hardly well underway. Therefore, I will take
that modest elasticity in concept as a frame for this essay. This frame will serve as background for some
of my hopes and gripes about contemporary psychology and mathematical psychology’s place therein.
It will also act as platform for earnest, if wistful thoughts about what might have (and perhaps can still)
aid us in forwarding our agenda and what I see as some of the promising avenues for the future. I loosely
structure the essay into a section about mathematical psychology in the context of psychology at large
and then a section devoted to prospects within mathematical psychology proper. The essay can perhaps
be considered as in a similar spirit, although differing in content, to previous editorial-like reviews
of general or specific aspects of mathematical psychology such as [Estes, W. K. (1975). Some targets
for mathematical psychology. Journal of Mathematical Psychology, 12, 263–282; Falmagne, J. C. (2005).
Mathematical psychology: A perspective. Journal of Mathematical Psychology, 49, 436–439; Luce, R. D.
(1997). Several unresolved conceptual problems of mathematical psychology. Journal of Mathematical
Psychology, 41, 79–87] that have appeared in this journal.

© 2008 Elsevier Inc. All rights reserved.
1. Psychology and mathematical psychology therein

1.1. A glimpse of recent history

Psychology is a young science as opposed to a young field

I A word is in order concerning the scope and style of this essay. There are
many themes that could be selected for such a piece. The topic I have chosen
centers on the health and future of mathematical psychology. It does include a
necessarily very succinct history and a number of bordering issues along with some
suggestions for remediation and improvement. Due to space limitations, I have had
to limit mention and citations of a plethora of important names outside those of a
very few of the pioneers in the field. A vast number of important investigators es-
pecially if they’re on the younger side are neglected. In particular, I had to virtually
entirely omit the contributions, many overlapping with mathematical psychology,
stemming from the field of psychometrics. The same goes for a voluminous set of
researches on categorization. I regret and apologize for these necessary omissions.
And, though an individual may have performed valuable research in several areas
of mathematical psychology, I refrained from making these multiple mentions.
I should also mention that I cannot guarantee that all citations within a set of
references in the same location in the essay will be homogeneous (e.g., all reviews
of their work, all at about the same date, etc.). It was already laborious simply
collecting these as they are. I also take license to occasionally mention important
names sans specific citation. The style is meant to be informal, even conversational,
so some notable individuals receive mention without specific citation.
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1 President of Society for Mathematical Psychology 2004–2005.
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of discourse. Ponderings about psychological topics, casual and
systematic, recede into recorded history. Yet we all know that
scientific psychology is little more than one-hundred twenty-
five years old or so, dating by convention from 1879, the year
of establishment of Wundt’s famous laboratory in Leipzig; this
according to Boring’s (1957) calendar of experimental psychology.

Without question, we have made rather startling progress by
almost any measure, in that scant time. This progress has arguably
accelerated since the 1940s due to the amazing new tools, so
attractive and appropriate for non-physical sciences, proffered by
von Neumann, Wiener, Shannon, and others.2 I speak, of course, of
automata theory (von Neumann), utility theory (von Neumann &
Morgenstern), cybernetics/feedback control theory (Wiener), and
information theory (Shannon) (see, e.g., Townsend and Kadlec
(1990)).

A significant paradigm shift in psychology occurred when it
began to move away from the grand and perhaps overweening
schools toward less capacious, but more articulated venues con-
taining more testable models and hypotheses. The grand schools
were highly conspicuous in abnormal psychology, especially in the

2 In all cases of name listing, there is no significance to their order.
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various off-shoots of Freudian theory: for instance, Adler, Fromm,
Jung, Horney, and Reich, to name a few. But experimental psychol-
ogy also possessed broadly encompassing theories identified with
individuals, as witness Thorndike, Lewin (also featured in social
psychology), Skinner, Tolman, Hull, and Guthrie.

The 1950s and then the 1960s saw such quantitative areas
as signal detection theory, mathematical learning theory, and
foundational measurement theory aid and abet this transition to
a less global but more rigorous, science.3 Names we think of in the
signal detection connection are Peterson, Birdsall, Fox (engineers),
Swets, Tanner, Green and Egan. Pioneers in mathematical learning
theory include Bush, Mosteller, Estes and again rather quickly,
Suppes, Atkinson, Bower, and Crothers, and Murdock.

In addition, just about the same time, psychologists and friends
began to work out new theories of measurement that included
structures more appropriate for the behavioral and biological
sciences than had the ‘classical’ approaches of Campbell and
others. We note well-known contributors like Suppes, Krantz,
Luce, Tversky, and in somewhat different vein, Coombs, and
N. Anderson. These investigators also overlapped the growing field
of decision theory oriented toward actual human behavior. Other
notable names around the same time, in allied pursuits with these
various topics were Restle, Greeno, LaBerge, Sternberg, and Theios.
Garner and Attneave and Laming helped bring information theory
into the fold of quantitative psychology. And, the rather neglected
(admittedly not quite so much in psychometrics), but fundamental
topic of geometry in psychology was given a considerable boost by
Shepard, Kruskal and others.

With the foregoing eye-blink history as preface I move to a list
of woes that afflict psychology, afflictions that can be somewhat
ameliorated by the practice of mathematical psychology.

1.2. The tortoise and the hare

It can prove a frustrating experience to compare psychology’s
pace of advance with progress in the ‘hard’ sciences. Except
perhaps in the flurry of studies one may witness on discovery
of a dramatic ‘effect’ (see discussion immediately below), steps
in filling in data about a phenomenon not to mention testing
of major theoretical issues and models, seem to occur with all
the urgency of a glacier. One may wait years, before a modeler
picks up the scent of an intriguing theoretical problem and carries
it ahead. It is disheartening to contrast our situation with, say,
that of microbiology. Perhaps the influx of quantitatively prepared
‘outsiders’ (look for later discussion) will helps speed things up.

1.3. The eternal pursuit of effects

One of the ‘blessings and curses’ of modern psychology is
the everlasting quest for ‘effects.’ Some of our most famous
investigators made their name by discovery of a novel and
enchanting effect. In some cases, these have led to a rich set

3 Somewhat truthfully and perhaps somewhat waggishly, the period of the 1960s
at Stanford has been referred to, at least by the erstwhile graduate students of
the times, as “the golden days of mathematical psychology”. Frequent workshops
with other math–psych bastions such as University of Michigan and University of
Pennsylvania were held, the milieu was outstanding with a modeling faculty that
included William Estes, Richard Atkinson, Gordon Bower and Patrick Suppes. Many
of the students during that period were to become leaders in various facets of
psychology. The pack in my cohort includes Michael Humphreys, Richard Shiffrin,
Don Hintzman, Robert Bjork, Stephen Link, Chiziko Izawa, William Batchelder,
Donald Horst, Jack Yellott, Joseph Young, David Rumelhart, and Michael Levine. In
addition, many already or soon-to-become, notables visited in a post-doctoral or
visiting scientist capacity. With no apologies for the nostalgia, it was a fabulous time
and place to be entering scientific psychology.
of phenomena and interesting, if rarely conclusive, explanatory
models or theories. A downside is that the careful and steady,
incremental growth of the science can be neglected, since the
obvious rewards, or at least the ‘grand prizes’ in the field are
accorded the discoveries of effects. But the interpretation of the
initial effect that stands unaltered in the face of replication and
parameter variation is quite atypical. Often, follow-up experiments
require elaboration or complexification of the original rationale
and frequently, yet more experimentation. Thus, this approach
can be productive if carefully pursued experimentally and
theoretically. Otherwise, our priorities can be decidedly skewed
toward unearthing of new effects.

1.4. Another portentous trade-off approach: Operationalism

A close cousin of the ‘effects’ bias is the embodiment of one or
more theoretical notions in an experimental paradigm, or set of
paradigms. The growth of ‘operationalism’ was associated with the
philosophical movement of logical positivism and the Vienna Circle
(think Schick, Ayer, Carnap, Neurath, Hempel and influencers and
fellow travelers such as Russell, Wittengenstein, Popper) and found
a vent in psychology through efforts of Meehl & MacQuordale and
the physicist Bergmann (it has been said that Bergmann influenced
the social sciences far more than he did physics). Again, this
approach possesses benefits, and aided psychology in shaking off
the residue of impossible-to-answer philosophical conundrums
that still adhered to the field in the early twentieth century. The
loved and hated school of behaviorism came into existence and
dominated experimental psychology for several decades.

In any event, there were snags, snags which were proba-
bly unanticipated by the founders of the ‘operational definition’
wherein philosophical claptrap was avoided by defining theoret-
ical entities by way of the empirical operations through which
observations were recorded. A substantial snag is the risk of cir-
cularity where a theoretical hypothesis points to an experimental
result and vice versa. The theoretical and phenomenal restrictions
are evident. Or, if as sometimes occurs, there are several more-or-
less distinct operations relating to a phenomenon and presumed
theoretical concept, these may turn out to be closely related (iden-
tical occasionally, this is good), unrelated, or even contradictory,
depending on a subsequent theory developed to encompass the
paradigms associated with respective operational definitions.

Mathematical psychology serves as a stiff antidote to the af-
flictions of ‘effect-philia’ and cul-de-sacs of overindulged oper-
ationalism. The necessity of providing a rigorous, economical,
accounting of concepts and empirical through a quantitative model
clearly combats the overly particular, and acts not only to ac-
commodate an entire set of phenomena, but assays the abil-
ity of diverse theoretical notions and experimental operations to
‘live together’ within the same theory.

1.5. Anti-replication and anti-null effects bias

With regard to afflictions in psychology (and probably a number
of other sciences), I mention two which are not particularly
solvable through modeling, but I want to get them off my chest:
One is the heavy bias against replication. Too few studies are
published that precisely replicate an earlier study. In fact, younger
investigators in particular, are warned to include variations so that
editors and reviewers will not reject their ‘replication’ out of hand.
This is not an earmark of a mature science. Long ago, William K.
Estes spoke of this regrettable prejudice in a seminar during my
graduate student days. It seems just as true now as it did then.

A cognate weakness that many writers have remarked on,
using a variety of terms, is the bias against publication (or even
consideration for publication) of ‘null’ results. How on earth can
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psychology advance when only ‘positive’ findings with regard to a
hypothesis, model, etc., are made available to the scientific public?
A number of suggestions have been put forth to circumvent this
obstacle, including an archive of negative findings, perhaps sorted
according to topic. To my knowledge, this strategy has never been
seriously attempted. With the current revolution in electronic
publishing, it might be worth a try. With the increasing ability
of information systems to implement content-addressable search,
even just the compilation of frequencies of positive vs. negative
findings could be implemented in the drawing of inferences.

Aside from null results, recent years have seen a lively debate
about the value of null hypothesis testing, in addition to various
means of improving the strategy and avoiding its threatening
sloughs of despond.

1.6. Methodology = Modeling plus statistics and psychometrics

Another associated topic involves methodology in psychology.
A multitude of writers have decried the methodological fetters
accompanying decades of over-reliance on standard statistics,
statistics originally intended more for assessing grain production
under varying conditions than for an evolving systematic science.
On the one hand, traditional statistics and its offspring have served
as effective tools for much of the advancement of psychological
science in the last century. On the other, an argument can be
made that we have become much too dependent on its fruits in
ways that have succored the tendency to ‘live-with’ loose, verbal
theories. Done right, the field of mathematical psychology offers a
prescription for using quantitative theory to impel theory-driven
methodology.

Of course, there will always be a need for statistics. In addition
to testing various traditional hypotheses, providing for confidence
intervals, etc., it is highly useful to have in hand tools to test model
fits and, even better, to compare models against one another (see,
e.g., the useful special issues of Journal Mathematical Psychology
(Myung, Forster, & Browne, 2000; Wagenmakers & Waldorp,
2006)). This topic will reappear in later sections of the present
essay.

1.7. A regrettable neglect of proper scientific referencing

I will conclude this section with a little belly aching pertinent
to the behavioral sciences in general and psychology in particular.
Obviously, we all know of areas in psychology that are amenable
to modeling and could clearly profit from it. Often, verbally based
“theories” may be underpinned (or even contradicted) through
previously published quantitative research but the verbal theorist
fails to use or cite it. It may well be that the ‘errant’ investigator
thought up the approach independently in a verbal and qualitative
way, as psychologists often do. Or it may be that they simply don’t
feel that anything accomplished mathematically has to be cited by
non-modelers, as noted above. In either case, it is bad science and
insulting to the theorists and methodologists who labor mightily
to advance psychology as a rigorous science. I trust that a physicist
would not fail to recognize mathematical results that formed a
sturdy basis under her theory or tools.4

A related gripe concerns the tendency of investigators in
different quantitative, but overlapping, disciplines to ignore work
in the areas of their research ‘cousins’. Sometimes this simply
takes the form of failing to utilize helpful material from other
research domains, but not infrequently, it may involve lapses in

4 I suspect a number of readers can think of instances of this phenomenon,
perhaps intersecting their own work. I rather cravenly fail to mention names in
order to avoid litigation and other unpleasant retribution.
citing even mathematical theorems that have been previously
published elsewhere. Mathematical psychology is occasionally
prey to this tendency since we overlap such a broad sweep
of mathematically oriented research venues. The writer has
witnessed several examples of these oversights. Economics,
industrial engineering, operations research, biophysics, many
areas of artificial intelligence (robotics, pattern recognition,
problem solving . . . ) clearly provide for rich interaction among
investigators but are likewise prone to this type of abuse.

2. Mathematical psychology: Rumination on its evolution and
position

2.1. Continued development of areas of mathematical psychology and
rumors of a demise

As observed earlier, mathematical psychology emerged from
embryo in the late fifties and early sixties of the twentieth century.
Already by the end of the sixties, some were pronouncing the
demise of mathematical psychology.5 Did it really die, despite the
ostensible continued existence of practitioners of that field? If not
an obvious corpse, is it in dire peril?

Let’s pause a moment to espy the fate of some of the major
areas of early effort in mathematical psychology mentioned earlier.
Perhaps they may shed some light on this assertion. In addition,
this little tour will allow us to discern where major branches of the
field have themselves perambulated.

2.2. Foundational measurement

Several of the founders’ names were mentioned earlier but it
would be remiss not to cite several major seminal works in this
area: The three foundational volumes of Krantz, Luce, Suppes, and
Tversky (1971), Luce, Krantz, Suppes, and Tversky (1990a,b) and
Suppes, Krantz, Luce, and Tversky (1989), the excellent pedagogical
text of Roberts (1979), and the seminal topologically based volume
of Pfanzagl (1968).

Foundational measurement theory has continued to attract
highly skilled mathematicians and quantitatively oriented psy-
chologists from throughout the world and to advance knowledge,
especially on the critical topic of ‘meaningfulness’. Technical dis-
cussion is beyond my scope here, but informally, ‘meaningfulness’
relates jointly to how a measurement scale represents qualitative
aspects of the real world, and the degrees and types of invariance
that properties of a scale enjoy under permitted transformations of
that scale (e.g., Krantz et al. (1971) and Roberts (1979); for a recent
thoughtful statement, see Narens (2003)).

One impediment to more usage of foundational measurement
theory has undoubtedly been the relative paucity of effort and re-
sults on an ‘error’ theory which could provide a ready implemen-
tation of statistical procedures with data. Groundbreaking work
continues on this challenge (for recent progress on stochastic ap-
proaches to foundational measurement which subsume the tra-
ditional error theory, see, e.g., Niederée and Heyer (1997) and
Regenwetter and Marley (2001)).

I believe this field is and will continue to be, of interest not only
to the behavioral and biological sciences, but also to philosophy
of science and epistemology in physics, although at present the
substrata primarily relate to Newtonian rather than relativistic
physics. At any rate, this branch of mathematical psychology is
apparently not responsible for the reputed passing of the field.

5 As far as I can ascertain, these announcements have been confined to verbal
remarks. However, they have occasionally been uttered by renowned psychologists.
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2.3. Signal detection theory

Signal detection theory, as most readers of this essay will
know, emerged in the 1950s as a confluence of Neyman/Pearson
statistical decision theory and ideal detector theory of electrical
engineering (e.g., one of my early favorites is Peterson, Birdsall,
and Fox (1954)). In psychology, the Green and Swets (1966) book
has become a classic with other volumes such as Egan (1975)
following up on interesting byways. Early on, there were clear
and continuing associations to be made with Thurstone’s popular
discriminal processes theory.

Signal detection theory went through a period during the sixties
and early seventies in which psychologists proffered a number
of models that lay outside the engineer-oriented mathematical
communication theory (as exemplified by the central content of
the popular (Green & Swets, 1966)), the latter also incorporating
(but was not limited to) elementary statistical decision theory.
In addition to Luce’s adaptation of his choice theory to detection
and recognition situations (e.g., Luce (1959, 1963a)), a number of
finite state models were put forth and evaluated (e.g., Atkinson
and Kinchla (1965), Krantz (1969) and Luce (1963b)). Although
these contained interesting capabilities, not always captured by
the dominant theory (as exemplified by Green and Swets (1966)),
especially learning effects (e.g., Kinchla, Townsend, Yellott, and
Atkinson (1966) and Luce (1959)), they currently see only
occasional employment.

In contrast, the dominant theory is now ubiquitous in
psychology in general as well as in sensory sciences, usually
employing the ubiquitous Gaussian distributions (nonetheless,
two-state models vie with the continuous theory in certain
areas; see the Wixted reference below and citations therein).
With regard to the latter characteristic, it would seem that
certain foundational results could be beneficially employed by
experimental researchers (e.g., Marley (1971)). For example,
ideal detector theory is flourishing as are multidimensional
theories of signal detection. An example of the latter is general
recognition theory, which was originally developed in order to
study interdimensional interactions (e.g., Ashby and Townsend
(1986), Kadlec and Townsend (1992) and Thomas (1999, 2003)).
One of the major contributions of signal detection theory was
the centrality of decision mechanisms, even in putative “purely
sensory” domains. This facet continues to offer fresh perspectives
as in the Wenger and Ingvalson (2002) study which found a
powerful role of the decision process in the perception of holistic
vs. non-holistic object perception. It has been widely employed as
a theory of categorization (e.g., Ashby and Maddox (1990); many
of the models in Ashby (1992) are signal detection based).

Certainly, signal detection theory should be studied (usually
it is covered rather cursorily, if at all, and in a non-quantitative
fashion–more is the pity; see below) even by students in their
introductory courses. It stands as the prototypical theory-driven
methodology, since it can be employed to discern decision and
learning bias from ‘true’ sensory or sensitivity (e.g., signal-to-
noise ratio) effects in such diverse fields as hypnotic phenomena,
to trial-witness memory, to laboratory psychophysics or learning
and cognition experiments e.g., Swets (1996); see Balakrishnan
(1999) for an alternative method of analyzing sensory and bias
effects). For instance, Wixted (2007) argues for a ‘traditional’ type
of signal detection model against less mathematized but process
oriented, two-process kinds of models, in certain areas of cognition
(e.g., see Balota, Burgess, Cortese, and Adams (2002), Diana, Reder,
Arndt, and Park (2006), Heathcote (2003), Hockley and Cristi
(1996), Malmberg, Zeelenberg, and Shiffrin (2004) and Yonelinas
(1994)). MacMillan and Creelman (2005) compile a worthy set
of signal detection-based methodologies provided in a tutorial
style. Wickens (2002) provides a basic introduction to many of the
fundamental concepts.
In any event, there is no reason to think that signal detection
theory encouraged anyone to proclaim the decease of mathemati-
cal psychology.

2.4. Decision theory

What about the field of decision making? One branch of
effort primarily theoretical but impelled partly by a growing
literature of experimentation, finds its roots in the axiomatic
foundations laid down by von Neumann and Morgenstern (1953).
Psychologists dedicated to this tradition consisted partly of those
also contributing to foundational measurement, and indeed, often
similar tools are found in their theoretical arsenal (e.g., Luce,
Suppes, Krantz, and Tversky). Of course, this branch also included
those with statistics or economics backgrounds (e.g., Savage).

A massive and influential development in the field came about
through the efforts of Tversky and Kahneman, who discovered
a number of human choice situations in which people veer
drastically away from the classic (and even some newer) axiomatic
theories. Certain of these cases flow from their theoretical results,
especially prospect theory (Kahneman & Tversky, 1979). As
everyone should now know, this corpus of work earned Kahneman
the Nobel Prize in economics and would undoubtedly been
awarded simultaneously to Tversky were it not for his untimely
passing.

The field of decision making has historically been somewhat
separated into a set of quantitative theorists (mostly in the
axiomatic or statistical framework) and a set of experimentalists,
the latter largely made up of psychologists. Of course, there still
are many who do both (e.g., One subdivision of the experimental
group has inclined toward testing predictions made by the
axiomatic or statistically-based models (Birnbaum, 2004). Another
area has concentrated on continuing the quest for psychological
behavior that seems at odds with various facets of the axiomatic
theories [especially utility theory]). Yet another has evolved
non-quantitative models or theories that attempt to be heavily
real-world oriented (e.g., how do people make decisions in a
group-crisis?), and experimented thereon.

Although various facets and extensions of utility theory per
se are still active research areas, a number of investigators have
moved on to explore the preferential laws governing risk (Weber,
Shafir, & Blais, 2004). In addition, the perhaps overdue appearance
of hedonics in the consequences of decisions has occurred (Mellers,
2000). Gigerenzer and colleagues have been a powerful voice
in plumping for models based on all-too-human limitations in
processing capacity and sometimes rationality (e.g., Gigerenzer
and Todd (1999)). Wishing to avoid charges of excessive modesty,
I hasten to mention work that seeks to be in the spirit of strong
quantitative theory but heavily invested in psychological and
biologically flavored knowledge (Busemeyer & Townsend, 1993).6
In any event, I can locate little in the evolving field of decision
making that should have precipitated augurs a terminal malady of
mathematical psychology.

2.5. Psychophysics

I somewhat artificially separated signal detection from psy-
chophysics and it might legitimately be argued that neither is
strictly a subfield of mathematical psychology. Moreover, due to
space and ‘psychological distance’ concerns, I must neglect the now
sizeable field of sensory sciences, which of course, heavily over-
laps both psychophysics and signal detection (and uses methods

6 I refrain from mentioning the likelihood of a pummeling about my head and
shoulders by my colleague, Jerome Busemeyer.
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from both). Nonetheless, I think it is fair to say that in some senses
the psychophysics of Weber, Fechner (to a lesser extent Wundt),
Helmholtz, and others was a progenitor, along with statistics, of
mathematical psychology. Also, modern mathematical psycholo-
gists and psychophysicists have long been attracted to it, apply-
ing concepts from measurement theory and functional analysis
(e.g., see Falmagne (1985) and Luce, Bush, and Galanter (1963)) as
well as more process models (e.g., Baird (1997) and Link (1992)).

From some viewpoints, Stevens (1951) should probably be con-
sidered as the twentieth century heir of classical psychophysics,
through his innovation of the necessity for a hierarchy of mea-
surement scale types as well as his new experimental methods of
scaling, the so-called direct methods. One influential investigator
whose work could be listed in several of the present categories in-
cluding the present is that of Shepard (1964). Another is Anderson
(1981). A substantial and evolving theory of psychophysics with
roots in Fechner’s original developments is found in the work of
Dzhafarov and Colonius (e.g., Dzhafarov (2002) and Dzhafarov and
Colonius (2007)). Nosofsky has contributed an influential modeling
approach which links up psychophysics, psychometrics (via multi-
dimensional scaling), and information processing (e.g., Nosofsky
(1984)).

An enduring challenge, not unrelated to the issue of multidi-
mensional interactions mentioned earlier, is the inclusion of con-
text effects in psychophysical scaling (see, e.g., Helson (1964) and
Parducci (1956)). The drawing together of the psychophysical ap-
proaches with process model approaches to context and inter-
actions has begun (e.g., Chapter 16 in Baird (1997), Hughes and
Townsend (1998) and Link (1992)) but is likely still in its infancy.
Nonetheless, it appears that such a synthesis can be useful. For
instance, a coalition of psychophysical with process methodol-
ogy has elucidated aspects and challenges of the Stroop effect not
previously visible (Melara & Algom, 2003). Sarris has made funda-
mental contributions to relational psychophysics in comparative-
developmental psychology (e.g., Sarris (2006)).

2.6. Neural modeling

One very significant player in quantitative theory in psychology
as well as cognitive science has been neuropsychological modeling.
It might have been expected to provide a major counter weight to
some of the less propitious forces facing mathematical psychology.
Due to the potentially symbiotic linkages that could result when
both are applied in the spirit of reductionism (but see Uttal (1998)),
plus its almost startling resurgence in recent years, I take a little
more space on this topic.

Like some of the other branches of research, an adequate
history of neural modeling would take up at least one volume.
However, we can limn in some of the most evident sign-posts.
Although neural modeling was certainly around at the time that
mathematical psychology received its formal impetus, and there
have been significant intersections over the years, it is not routinely
thought of as a sub-field of mathematical psychology.

Modern history of neural modeling goes back at least to
Rashevsky and Ashby in the 1940s. The fifties saw emergence of
logic network based thinking (flowing undoubtedly from automata
theory of von Neumann, Turing, and others) by McCulloch and Pitt.
The ultimate influence of Hebb’s well-known principles of synaptic
learning, though not so rigorously presented originally as some
of the other candidates for attention, would be difficult to over
emphasize.

At the juncture where mathematical learning theory began to
fade in popularity (no causal implication intended here, merely a
time-marker), Grossberg (1969) began to publish his first neural
modeling work which, incidentally, included an emphasis on
learning and motivation. That work was, and is, founded on
non-linear (typically multiplicative) differential equations, most
often with strong systems-oriented interpretations afforded the
equational elements.

About this time too, two investigators in the cognitive science
revolution, Minsky and Papert (1969), published a book innocently
entitled “Perceptrons”. As most readers of this essay are well
aware, perceptrons are basically linear, and usually deterministic,
pattern recognizers; members of the class of systems known as
linear discriminant classifiers. These authors showed in a carefully
reasoned treatise, that perceptrons are incapable of seemingly
quite elementary topological distinctions.

Needless to say, their exegesis did not have the effect of
furthering the general interest in perceptron theory or perhaps,
even an encouragement with regard to neural modeling per se. In
fact, some have felt that it had a rather devastating consequence
on activity in neural modeling.

During the years that interest in neural modeling paled,
Grossberg and a few other theorists, such as James Anderson,
kept the fires aflame (Anderson, 1995). Anderson’s models could
be viewed as more sophisticated upgrades (e.g., incorporating
stochastic noise, Hebbian learning devices, and non-linear decision
structures) of perceptronic tenets.7

Then, in the 1980s, hurtled the connectionistic meteor, driven
in substantial part by the labors of Rumelhart and McClelland
(1986). Interestingly, Rumelhart had been a graduate student
in the Stanford mathematical psychology training program in
the 1960s. Even though some specialists would prefer to offer
distinct definitions for “connectionism” vs. say, “distributed
processing”, they are often used interchangeably to indicate what
we might call neuralistic modeling. “Neuralistic” might be a
reasonable neologism for this field since practitioners strive to
let neurophysiology and neuro-anatomy guide their efforts while
benignly neglecting less critical aspects of these disciplines. They
are occasionally taken to task for transgressions in this regard,
but theorization has always been a matter of emphasizing what
seems most vital and ignoring the rest. Certainly such criticisms
apply to all but the most microscopic models of neural functioning;
and the latter are often of little interest to psychologists. It is also
worth remarking, given our earlier discussion, that learning theory,
always a key ingredient of neural modeling, made an impressive
come back in the wake of the renaissance of the latter.

Although endeavors were made by those involved with the
Society for Mathematical Psychology to encourage affiliations and
interactions (e.g., by appointing connectionistic associate editors
to Journal of Mathematical Psychology; inviting keynote addresses
by leaders in connectionistic modeling, etc.), and although many
mathematical psychologists have labored from this perspective,
the attempts to embrace this field perhaps have not been entirely
successful. There are notable exceptions, including the work of
Kruschke (1992).

Neuropsychological modeling has certainly waxed and waned
over the past half century or so, and has proceeded more or less
independently of mathematical psychology, but it doesn’t appear
to have been responsible for the obituary of the latter at any point
in time.

2.7. Information processing approach

Like the other topics discussed here, the information processing
approach possesses somewhat fuzzy boundaries, but perhaps

7 In the discipline of neural modeling even more than others, space and the
natural emphasis of this essay prohibit listing of a sizeable set of investigators
primarily associated with other fields, which have made fundamental contributions
to neuro-psychological quantitative theorizing.



274 J.T. Townsend / Journal of Mathematical Psychology 52 (2008) 269–280
even more so. A central tenet seems to be the representation
of perceptual, cognitive, and/or motoric mechanisms, usually
confined to a certain task setting, via a set of subsystems with
the information flow (itself usually a fuzzy concept) depicted via
the so-called, and ubiquitous, flow diagram. Lachman, Lachman,
and Butterfield (1979) provided what I regard as a quintessential
tutorial on the information processing approach, and one of the last
rigorous treatments of cognitive psychology for undergraduates. Of
the early textbooks in mathematical psychology, probably Laming
(1968) was the closest to the information processing approach.
Undoubtedly spawned by computer science (e.g., automata
theory), and aided and abetted by information theory and
cybernetics, the generic conception was picked up just as fast by
general experimental psychologists as by mathematical modelers,
sans the rigor of the latter. Yet, the seminal efforts of Sternberg,
Sperling, Estes, Falmagne, Atkinson, and others, helped attract
modelers intrigued by the idea of analyzing a system down into
its functional components, even if (or because) the properties
of the system in action might reveal emergent properties. Later
contributors of the modeling ilk include Nosofsky, Massaro, Link,
Yellott, Ratcliff, D. Meyer, Colonius, Diederich, J. Miller, Vorberg,
Bundesen, E. A. C. Thomas, Massaro, Logan, Schweickert, Dzhafarov
and others.

Models of response time have been especially influential and
productive in uncovering underlying processing mechanisms. The
most popular types of response time models, often including
accuracy predictions have been those based on random walks (e.g.,
Link and Heath (1975)), diffusion processes (e.g., Ratcliff (1978)
and Busemeyer and Townsend (1993)), and counting processes
(e.g., Smith and Van Zandt (2000)).

I believe the essence of the information processing approach
provided a milieu that helped prompt investigations into issues
of model mimicking. This influence was even felt in modeling of
learning and memory. Thus, Greeno and Steiner (1964) analyzed
model equivalence within Markov chain models of memory.
Batchelder (1970) attacked what seemed to be a mimicking issue
regarding incremental vs. all-or-none learning and showed how
to distinguish them. My own efforts on parallel vs. serial model
testing began shortly thereafter (e.g., Townsend (1969, 1971,
1972) and Townsend and Wenger (2004)). Of course, knowledge
of when and how models cannot be differentiated can assist in
erecting a meta-theory or methodology that is capable of such
assay (e.g., Townsend (1976a,b)). In my not-unbiased view, the
information processing approach is still alive and prospering,
although perhaps not always under that rubric.

2.8. Mathematical learning theory

And then there is that other early pillar of mathematical
psychology, mathematical learning theory. The germinating work
of Bush and Mosteller (1955) and Estes (1950) gave rise to a decade
or so of fervent activity on mathematical models of learning,
including a wave of anthologies and monographs (e.g., Bush and
Mosteller (1955); later, Atkinson, Bower, and Crothers (1965); very
late, Restle and Greeno (1970)).

Even during the 1960s, mathematical learning theory was
beginning to move toward more emphasis on memory and less
on learning. By the mid-seventies publications of theoretical and
experimental effort devoted to mathematical learning theory had
diminished precipitously. Furthermore, it could be (and was,
at least informally) argued that finite-state Markov learning
models, a mainstay in the field, were beginning to appear rather
baroque, sometimes without convincing signals from the data that
such elaborations were required. Perhaps before self-corrective
measures could eventuate, other forces essentially moved in to
occupy the territory.
Thus, by this time, the budding field of cognitive science, with
both its theoretical content as well as implementation heavily
determined by digital computers and automata theory, was in-
creasing enormously in popularity, with Simon and Newell per-
haps leading the charge in areas close to experimental psychology.
Contributions began pouring in not only from experimental psy-
chologists but also philosophers, computer scientists, electrical en-
gineers and applied physicists. Such innovations as production
systems soon provided a powerful lure to psychologists seeking a
richer milieu for concepts about mental operations. Likely, it is pri-
marily the confluence of cognitive science as a new and promising
field along with the perceived failure of mathematical learning the-
ory to ‘pay off’ that caused a substantial hiatus, if not termination,
of the latter. Into the bargain, many of the founders of mathemati-
cal learning theory were increasingly attracted to regions of study
more closely allied with cognitive science, such as the broad ap-
proach of human information processing. It seems fair to say that
the well-known Atkinson and Shiffrin model of short-term mem-
ory and control processes (Atkinson & Shiffrin, 1968) epitomized
this movement. The subsequent launching of the ACT models by
J. R. Anderson and colleagues (e.g., Anderson and Bower (1973))
in some ways intersect both the information processing approach
and the emerging cognitive science paradigm (e.g., a la Simon &
Newell).

The evidence seems to point to the recession of mathematical
learning theory in the late 1960s as one key marker that
convinced some investigators of the weak health, if not demise,
of mathematical psychology. Moreover, a number of modelers
who cut their teeth with the ‘classical’ learning models, were
now moving wholesale into ever broader and more rigorous
models of memory. I refer in particular, to the works of Hintzman
(1986), Izawa (1971), Murdock (1982), (e.g., Raaijmakers and
Shiffrin (1981)), (e.g., Humphreys, Bain, and Pike (1989)), which
investigators have over the past few decades made this field into a
poster child of how behavioral research should be carried out.

Okay, so we could lay some of the blame for the perhaps pre-
mature rumor of the death (but not interment!) of mathematical
psychology on the adventitious events pertaining to learning the-
ory in the late 1960s. However, it has always seemed paradoxical
to me how learning per se was shoved into the corner for sev-
eral decades, even though memory became supersedent as a le-
gitimate topic in cognitive science and mathematical psychology
per se. How did these memories originally become instated? With
few exceptions only in the relatively lonely (for awhile!) terrain of
neural modeling (e.g., Anderson (1973) and Grossberg (1969); and
shortly with a resurgence from the Anderson quarter e.g., Ander-
son (1990)), did learning theory persevere. While it is fair to say
that learning played some part in some of the burgeoning mem-
ory models, it was at best a minor role. Learning as a legitimate
research topic is happily now back with us big time.

In any event, it is time to abandon this historical, if somewhat
whimsical, excursion and pose the query as to the state of health
of the field today.

2.9. Trends, education, politics, and tenure

One can attempt answers along many dimensions. First, the
“glass is half full” perspective: The Society of Mathematical
Psychology continues to serve many functions that are conducive
not only to the highest standards of research in mathematical
psychology, but to encourage the entering of young scientists
into our field. Its members contribute expert reviewership to a
broad spectrum of research areas vis-à-vis journals and scientific
grant proposals. They provide some of the top research, especially
through model and theory building, in scientific psychology. Many
regularly bring in valuable grant resources to their universities,
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even in these extreme financially harsh times. Many members of
the Society have served on strategic committees and panels in
national institutes and other societies and federations.

Nonetheless, there are serious “glass is half empty” concerns:
For instance, with reference to membership of Society of Math-
ematical Psychology, we find that unfortunately, numbers have,
with some fluctuation, tended to decline in number since its for-
mation in the late 1960s (following inauguration of Journal of Math-
ematical Psychology in 1964). We will see that there is widespread
anxiety about quantitative training in psychology, not simply in-
clusive of mathematical psychology per se. We can question ‘why’
and ask about relationships to various movements in psychology
and cognate areas.

2.10. Fractionation vs. generality

One trend over the past century up to the present has been the
steady fractionation of science in general and certainly psychology
in particular. This trend has been associated with many benefits,
such as deepening knowledge and specialization within many
branches of study. Yet, it has arguably, if rather paradoxically, been
at the expense of areas like mathematical psychology which seek to
encompass a wide sweep of individual domains, from learning and
memory, to sensation and psychophysics (indeed to at least one
society for each modality!), to models of social behavior, to neural
theory. As these specialties have budded and flowered, generalistic
groups such as SMP have often experienced hurdles in capturing
time from over-extended researchers.

2.11. Is psychology now ‘sold’ on mathematical psychology, having
effectively absorbed it?

One argument heard occasionally, even by ‘friends’ of mathe-
matical psychology, is that now quantitative modeling has been
absorbed by the field at large and hence a separate sub-discipline
devoted to this specialty is superfluous. For instance, serious ob-
stacles in the path of publishing mathematical models encouraged
the establishment of Journal of Mathematical Psychology. Support-
ing evidence is proffered that many experimental journals now
regularly accept quantitative modeling of the experimental data
within submitted articles. I agree that this is definite evidence of
progress. Yet, the acknowledgement of the fact does not lead inex-
orably to the consequent. For one thing, journal editors reveal an
astonishingly high variance with regard to their attitudes toward
quantitative modeling. And, many if not most, outside of quantita-
tive journals, pre-form some type of upper-bound on the degree of
abstraction they deem acceptable.

My view is that import alone should determine what sees
the light of day even in our more experimental or qualitative
organs, but with the stipulation that the editor should be free to
request fairly considerable clarification and even tutorial material.
A rebuttal might be to the effect that “Well that just means more
publications for the Journal of Mathematical Psychology”. A problem
with this reasoning is that if there is little or no overlap with
the experimental journals, it is even easier for less quantitative
scientists to ignore our work.

I think it can be fairly argued that SMP and Journal of
Mathematical Psychology, in addition to sister organizations and
journals such as Psychometric Society and Psychometrika, are
greatly needed by scientific psychology as “keepers of the flame”.
We serve as upholders of the highest quantitative standards by
our multitudinous duties as reviewers of papers and grants and as
practitioners of modeling and methodological science. All this, in
addition to our function in training of graduate and undergraduate
psychology majors.
2.12. Undergraduate training: Following the trends in society

Many surveys and studies have documented the steep decline
of scientific training and acumen in our youth, not to mention the
deterioration of scholarship in general (e.g., witness the lamentable
pruning of elementary and high school courses in music, foreign
languages, and even physical education, starting in the 1970s).
Hence, it should come as no surprise to learn that scientific
education of US college students is woefully inadequate.

With the possible exception of some well endowed private uni-
versities and colleges, psychology departments serve as bountiful
cash cows for their institutions, even (or especially) in large, public
research-oriented universities. In addition to sizeable flocks of ma-
jors plus non-majors, they typically bring in large amounts of out-
side research monies, sometimes close to or exceeding the more
established laboratory science departments. And, their classroom
lab facilities cost little to nothing in comparison with the latter.

The debt to the devil in all of this is that there is immense
pressure, if usually implicit, against driving down enrollments by
increasing standards, for instance, by requiring majors to take
more physical and biological science and mathematics. Of course,
this influence sums with many others, including the aversion
certain sectors and individuals within psychology feel towards
mathematics and hard science.8 Other pernicious forces include
the seemingly perpetual inclination of publishers to persuade
authors to ‘dumb down’ their textbooks and sometimes, even
scientific monographs, and the well-documented grade inflation
that has plagued higher education at least since the advent of the
1970s.

With regard to undergraduate training, given the above
and other factors, expecting a sea change toward solid-science
education, even for most psychology majors, not to mention the
legions from other departments who take our courses, is akin to
belief in the tooth fairy. The only practical solution I can espy is
for psychology departments to offer a true scientific psychology
track, with mandatory courses in the sciences, mathematics and
statistics. It could, but need not, be incorporated into a true honors
program.9

The latter could include options for coursework in engineering,
economics, ecological sciences, and more recently available,
informatics and biocomplexity, which would increase the chances
of those who decide not to pursue postgraduate education, to find
employment. An added benefit to psychology graduate programs
throughout the land, would be a diminution in the usual scenario
every spring: thirty or so departments fighting over a pitiably
small handful of qualified students, the latter of which either
come from other sciences or somehow manage to acquire decent
background in the face of feeble departmental curricula and
inadequate counseling.10 Certainly, the uninterrupted flow of milk

8 Naturally, much of this aversion is muted, especially overt statements of
opposition to “hard science” in general. However, one could not get far, even
in rigorous neuroscience, in the absence of a modicum of real mathematics
(e.g., the calculus). In addition, shocking as it may seem, occasionally first-hand
anecdotes surface from individuals in major universities, of prominent research
psychologists disparaging quantitative methodology and training (and this includes
psychometrics and statistical methodology; not just mathematical modeling).

9 It has appeared to me that many departments and universities began to
downgrade the standards associated with honors programs back in the 1960s and
70s. The reasons may vary but at least in some cases, one motive was to avoid
damage to self esteem—a noble goal, but perhaps at odds with the definition of
“honors”.

10 Who among us has not heard some version of the following undergraduate’s
refrain (and for me across several universities where I’ve taught): “But the counselor
laughed when I asked about taking math and science, and asked why a psychologist
would need something like that”. Of course, the one saving grace has been the
relatively continuous influx of quantitatively prepared students from abroad.
However, even this palliative may fade as countries begin to establish their own
fine universities and research institutes.
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from the contented cow should gladden the hearts of deans and
presidents.

2.13. Graduate recruitment and training

Given this prelude, perhaps it should not come as a surprise
that even graduate training in psychology has seen the devolution
of quantitative training; never that auspicious in the first place.
Several prominent psychometricians reported and discussed a
survey on quantitative training of psychologists in 1990 (Aiken,
West, Sechrest, and Reno (1990); cf. Townsend (1994)). At that
time outdated topics were a major concern with a consequent
under representation of newer, powerful strategies.

Fifteen years later we have a reprise on a considerably more
frightening note, in an article by Clay (2005) written for the
APA Monitor: the shocking scarcity of new quantitatively-trained
psychologists, and even of qualified programs to train them.11

Stephen West (Editor of Psychological Methods and Professor at
Arizona State University) is quoted “At lot of the major quantitative
programs over the years have died. We’re one of three larger
programs in psychology in the country, and we produced one Ph.D.
this year”.

Although mathematical psychology per se, probably never saw
more than three or four formal programs of training in the US,
it is still arguable that even that limited presence has declined.
Of course, the dearth of rigorously trained post-baccalaureate
psychologists mentioned above, and the degradation of science in
general in the US, are undoubtedly contributing factors.

Now, the Clay article portrays the view from some methodol-
ogists that quantitative psychologists are in great demand, with
some institutions finally ‘giving up’ when years go by without a
successful quantitative hire. That may be and if so, I applaud that
there is now a palpable appreciation of our specialty, without, of
course, hearty clapping for the diminution in numbers. I must say
though, that in my opinion, years went by where superbly trained
mathematical and psychometric psychologists were not accorded
the best job opportunities. Too often, the unspoken refrain seemed
to be something of the form “. . . well, everyone learns statistics at
a sufficient level to teach our introductory courses [often the only
kind offered], so we might as well hire in one of our favorite con-
tent areas and be doubly happy . . . ”. And, a rather dangerous pitfall
often awaited young quantitative psychologists, that of being ex-
pected to provide ‘free’ consulting services to faculty and students
(who often didn’t bother to take the assistant professor’s classes
on the topic), yet receiving little credit for these activities at tenure
and promotion time.

As other possible aversions to the beginning graduate student,
in addition to the sheer arduous technical preparation (years of
mathematics plus the applied quantitative tools), it has appeared

11 Partly to lodge support for this Monitor article and partly to stress the
contributions of mathematical psychology to quantitative training in psychology,
I co-authored with Richard Golden and Thomas Wallsten, a guest editorial on this
issue for the APA Science Directorate (Townsend, Golden, & Wallsten, 2005). The
topic of quantitative training in psychology was raised several times in various
‘break-out’ sessions at the recent APA sponsored Science Leadership Conference.
Admittedly, APA has in the past been accused of short-changing the ‘science’ in
favor of professional concerns, undoubtedly one of the several motivations for
the establishment of American Psychological Society. Nonetheless, there is some
evidence that APA, in addition to its decided interest in professional matters, is
credibly moving into the game of promoting scientific psychology. For instance, I
was recently able to recommend ‘challenges in quantitative training in psychology’
as a theme for the next leadership conference. Steve Breckler, Executive Director for
Science, APA, appears to provide a healthy force in this direction (see Psychological
Science Agenda (see psaA@APA.ORG, for more on APA’s role in psychological
science). In fact, APA is in the process of forming a task force on quantitative training
in psychology and hopefully such movements can help turn the tide.
to me that it is the very rare neophyte (i.e., newly minted
quantitative assistant professor) who can publish at the rate
easily achieved by their cohort in other specialties of the field.
Some departments, T&P committees and significant individuals
(especially pertinent is the chair or department head) do
appear to ‘handicap’ according to sub-discipline when considering
promotions and salaries, but I think this is not common and when
done, probably not to the appropriate degree.

Why, it might be countered, does the burgeoning field of
cognitive neuroscience seem to have little difficulty in attracting
apprentices? It is true that a huge range of technical ability
and background is accommodated within that discipline but the
same could be true in quantitative psychology. More persuasively,
neurophysiology has been a more entrenched part of psychology
— indeed, almost every department has an ‘area’ devoted to
neuroscience or neurocognition (the “in” terms for this region,
‘physiological psychology”, “psychobiology”, and so on, seem to
change every decade or so) — since the very inception of scientific
psychology. There are also feeder sources and ancillary training
posts for the physiologically inclined, like pre-med and biology
for which there is little concomitant in our area. Interestingly,
the current movement toward neuroscience forms one of the few
trends in psychology toward hard science.

In any event, it can be cogently argued that the central
advantage psychology has over other fields in years past has been
the relatively heavy component of education in practical statistics
and methodology and potentially, modeling. Hundreds of hours
of arduous, often boring and occasionally exciting, labor in the
laboratory plus the subsequent data analysis and model testing,
put psychologists in a solid position not only for academic positions
but also research and management in industry and government.

The pivotal role of experimental and methodological psychol-
ogists in effectively leading medical research teams especially in
experimental design and data analysis, while typically serving un-
der the obligatory M.D principal investigator, is well known. And,
clinical psychologists have neither the political clout, M.D. prestige,
nor monetary recompense afforded psychiatrists. But, they have
in the past been able to contribute their knowledge and practice
of test theory and administration. These skills largely disappear
in the unfortunate trend toward so-called Psy.D. degrees, which
require little if any research experience, statistical knowledge or
even training in psychological test theory. However, there are now
forty-five member training institutions in clinical science, which
adhere to the principles of the Academy of Psychological Clinical
Science. The goal of these programs is to emphasize the rigorous
training of a core of clinical scientists (see, e.g., McFall (2006)) per-
haps somewhat compensating for an avalanche of Psy.D. practi-
tioners over the past couple of decades. I don’t know if research
has been accomplished regarding the relative proficiency in ther-
apy of Psy.D. personnel vs. traditional Ph.D. clinical psychologists,
but there is no doubt about their respective statistical and research
skills. Although as one would expect, one of the major regions of
cross disciplinary training for clinicians is in neuro-science, some
departments, such as that at Indiana University, train some stu-
dents in mathematical modeling and collaborate with the quanti-
tatively oriented faculty.

Many of us have witnessed even people with Ph.D.s in such
fields as physics, engineering, computer science, and mathematics,
making grave errors in experimental design when they ‘cross-
over’ into experimental psychology in the absence of collaboration
within the latter.12 The same is true, and more, with regard to

12 This is not a criticism of these groups. Who would expect even a superbly
trained mathematical psychologist to do the work of a physicist, chemist, or
engineer?
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competition of our clinicians with psychiatrists in the ability to
organize, run and analyze research programs, and of course, to
give and interpret psychologically based assessments. In addition,
at present, unless they also have had significant training in
experimental psychology, especially in laboratory work, they often
seem to be deficient in the ‘lore’ of what solid psychological
research is all about.

Will mathematical psychology perish? In fact, will psychology
as constituting the leading body of investigators into psychological
research issues, shrivel and fade? Unfortunately, I think neither of
these grim results can be ruled out. As already noted, outstanding
scientists from the disciplines mentioned earlier, are beginning to
attack research problems in regions formerly thought to be our
province, in numbers almost meriting the term “flood”. No fools
they, it is actually surprising that we’ve had the field to ourselves so
long. They collectively bring an armamentarium of research tools
that we could well wish our own matriculating psychologists were
mastering.

Naturally, it follows that the science itself will not die, not even
quantitatively oriented theory and theorists. Only it would be a
little bit sad if psychology as a formal discipline, not to mention our
own mathematical psychology, both with their venerable history,
should fail to continue as the core of mental science.

Let us turn finally turn to what I hope are some further
interesting challenges as well as actions in which we can engage
that can lead to a more promising morrow.

3. Denouement of the present: The future

What are some hurdles that must (or at least should) be
overcome in order to optimize our science? What can we do to
remain vibrant and even grow over, say, the next fifty years? These
two goals may be thoroughly intertwined. Some possibilities that
occur to me follow below. Some are continuances of pathways
already opened and no doubt there are many more that will be
offered and implemented in the time to come.13

1. First, I make mention of three barriers in modeling: A. The
challenge of distinct theories which predict the same major
data corpora, and even become more structurally alike as they
strive to encompass new and old data. This barrier is often
found when a subject matter has been probed by models and
experimentation over a number of years. A classic example,
even within the sphere of ‘less mathematically precise’ is found
in the comparison of Tolman’s quite centralistic theory of
behavior vs. Hull’s more behavioristic (both, of course, became
known as “neo-behaviorists”, and we hasten to reiterate that
Hull made more effort at mathematization of his concepts).
This may be happening within certain well-studied areas
such as long-term memory (doubtlessly, there will be some
disagreement here) and perhaps to some extent, within areas
of the categorization literature. Of course, new data and
experiments can continue to yield fruit, but there is a danger
of new studies becoming increasingly ‘precious’ as to the
decreasing consequence of the new phenomena. One way to
break this cycle may be the import of neuro-imaging and other
physiologically based strategies. B. The challenge of model
complexity. Ever since the dawn of cognitive science, there
has been the obstacle posed by extremely complex models.
Jokes have often been made to the effect that one might as

13 Naturally, we hereby enter irrevocably the portals of “do as I say not as I do”,
since I could well have toiled more assiduously myself on many of these paths.
Nonetheless, hopefully even if most of us attempt to ‘pay our due’ in a small sector
of these, the cumulative effect will be mighty.
well be studying the human brain as opposed to trying to figure
out what a very complicated model is predicting, or especially
how it is predicting it. Although this problem originally reared
up within ‘traditional’ AI type models (e.g., those based
on seemingly interminable computer programs in LISP), it
reappeared in the embryonic connectionism. Even relatively
simple models with hidden units could be rather inscrutable.
Modern connectionist models tend to take several tacks
in negotiating these ‘rapids’: a. Hidden layers are assigned
specific roles to play in a cognitive task. b. Naturally, the tried-
and-(maybe) true usual statistical techniques such as factor
analysis, etc. are brought to bear on the black box system. c.
Theoretical lesions (a non-black box approach) are employed
to discern the various mechanisms. It has also been claimed
that so-called ‘local connectionist’ models are less prone to
this vein of identifiability problem than ‘globally distributed’
models (e.g., see interesting discussions in Grainger and
Jacobs (1998)).14 C. Even rather simple experiments can
require more data than is reasonable to acquire. For instance,
general recognition analysis of various types of independence
works optimally when a factorial design is employed with a
1–1 stimulus–response assignment. Thus, a five dimensional
experiment with four levels on each dimension would demand
45 or 1024 stimuli. Only 100 trials per condition (we like
to run at least 300/condition), precipitates over one hundred
thousand trials. At 500 trials per day (quite an arduous
schedule), this would consume approximately ten months.
There had better be a darn good chance of accumulating
solid meaningful data, for a very good theoretical reason,
to justify such an experiment. Of course, the time honored
tack here is to run multiple subjects. This would still be in
most cases, unpractical to say the least. More theoretically
problematic is the traditional practice of subject averaging,
now acknowledged almost universally to be flawed not only
in process modeling (e.g., Ashby, Maddox, and Lee (1994)
and Estes (1956)) but also in psychometrics, where it is
omnipresent (see Molenaar (2004)). Nonetheless, obeying the
precept that (almost) nothing is categorical, we have some ‘just
in’ findings which indicate that for small data samples, fitting
models to subject averages across is sometimes superior to
individual fits (Cohen, Sanborn, & Shiffrin, in press).

2. Mathematical psychologists and psychometricians should join
forces to strengthen and broaden quantitative training of
psychologists. Perhaps for historical reasons, there seems to
have been reluctance by parties of both sides to do much
of this in the past. Inexplicably, commissions on quantitative
training in psychology have sometimes omitted to involve
representatives of mathematical psychology. Perhaps the
present crisis will encourage more cooperation (even if of the
form “If we don’t all hang together, we shall certainly all hang
separately”).

3. We should encourage the construction and strengthening
of undergraduate tracks which possess higher standards
and upgraded, more scientifically oriented and quantitatively
dependent, class material. Even though these would probably
be expressed as something of the form, “. . . for honors-level
psychology majors . . . ” they would be open to capable students
from mathematics, as well as the physical and biological
sciences.

4. Psychology should require more undergraduate and gradu-
ate courses in mathematics and the physical sciences. Perhaps
psychology departments should offer more elementary math-
ematics courses integrated into psychological statistics and

14 I’m indebted to John Kruschke for an enlightening discussion of these matters.
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modeling in the same spirit as do the various fields of engi-
neering. Outside of the usual very low level statistics courses
required of everyone, these might be reserved for the under-
graduate students meeting the standards mentioned in (2)
above. Although we will never stand independent of courses
from mathematics, building more of our own courses and re-
quiring at least some of them possesses a number of advan-
tages. These include: A. Uniform training in various topics.
B. Affords an opportunity to employ examples from the so-
cial and biological sciences, especially scientific psychology.
This tactic renders the material more interesting and convinc-
ing and helps lead into the applications in advanced psychol-
ogy courses. C. Instills an esprit de corps (admittedly perhaps
somewhat like the “we’re all in boot camp together” phe-
nomenon) which helps bond budding psychologists. D. Acting
as ‘feeder courses’ into more advanced quantitative methodol-
ogy and modeling training.

Of course, we face not only opposition from certain sectors
of our own discipline but the usual territoriality of other
departments which teach similar material (again, engineering
has surmounted this common challenge and, presumably, so
could we). Another challenge, maybe especially pervasive in
graduate echelons, is the often oppressive number of general
core courses required of graduate students. However, this
type of challenge is somehow circumvented by psychological
neuroscientists so I don’t see it as insurmountable.

5. My opinion is that we have to be willing to teach statistical and
general methodological courses within our own department.15

It is a lamentable fact that there is significant pressure to
teach these at what we consider to be a criminally low level.
However, in most college and university settings, the number
of ‘slots’ accorded any sub-discipline will be at least partly,
and sometimes completely, a function of service teaching
responsibilities. We will almost certainly wither as a field if
we cannot justify our contributions partly through teaching
commitments.

6. Our thinking on the exploding interest by applied physicists,
computer scientists, applied mathematicians must be diverted
from “here come the (perhaps ‘at least as smart as us’)
barbarians”, to a more positive outlook.16 We should try to
bring them into collaborations and perhaps mutual teaching
assignments, perhaps in advanced courses or seminars. We
could encourage the most interested to attend SMP, and other
scientific psychology conferences. Our students attend their
courses, so perhaps we could lure some of their students
to take ours. The burgeoning field of cognitive science and
related disciplines, both in academia and industry, certainly
offer attractive job prospects for some excellently trained
scientists (e.g., high-energy physics and mathematics) whose
job prospects may not be too rosy these days, unfortunately.
And, it would jointly aid them and our science, not to mention
quantitatively sound research, if they were to receive more
training in our content research areas.

7. Related to but not identical to (5), practitioners of the
new fields of brain imaging are hungry for tools and
training pertaining to methodology and data analysis of their
data. We could make a real contribution to their statistics

15 Not everyone in quantitative psychology agrees with this declaration,
as witnessed by several conversations I’ve had with colleagues recently at
conferences; thus the ‘opinion’ clause.

16 Intriguingly, not all of this interest in deriving from what in the past have
been called “applied” mathematics. A few years ago, I attended a workshop
at a respected mathematical society on the topic of learning machines which
included presentations by several topologists, not often thought of, even by other
mathematicians, as especially ‘applied’.
(e.g., time series; parameter estimation; hypothesis testing)
and engineering (e.g., systems identification) approaches to
name a couple. In addition, this is one of a number of
areas where statistics and substantive process modeling
could synthesize with the neuroscience to offer vigorous
instruments for progress. Especially rich opportunities lie in
the relative scarcity of means of comparing and provisionally
linking two or more types of data, for instance, behavior,
fMRI, EEG, PET, single unit recordings, and so on. Ashby’s
(e.g., Ashby, Alfonso-Reese, Turken, and Waldron (1998))
recent modeling ventures into such regions appear prophetic.
These movements are going to be of enormous consequence in
the years to come.17

8. There is a small, but significant and hopefully growing
presence of rigorous process modeling in clinical psychological
science. One of the earliest pioneers has been Richard W.J.
Neufeld (e.g., see his new edited volume, (Neufeld, 2007);
papers include Neufeld (1993) and Neufeld, Vollick, Carter,
Boksman, and Jette (2002). Other innovative examples include
Stout, Rock, Campbell, Busemeyer, and Finn (2005) and Treat,
McFall, Viken, and Kruschke (2001). In point of fact, there is a
sector of clinical science where the researchers are as ‘tough-
minded’ as any in cognitive science, as and perhaps more open
to mathematical modeling than some of the latter. It would
behoove us to welcome and offer our ‘aid and abetting’ to this
small but growing field.

9. Simple finite-state process models, most often with a Markov
assumption transiting between states, have been with us
for quite a spell (e.g., finite-state signal detection models
mentioned earlier). Batchelder has assembled a very general
theory-driven methodology and related statistical armamen-
tarium based on this concept, which he terms cognitive psycho-
metrics. These constituent models differ from traditional linear
and log-linear models by virtue of their tree structure.

10. In addition to mathematical psychology’s time honored ability
to test parameterized models against experimental data, I
won’t miss a chance to plug approaches that test entire
classes of models against one another in ways that are
invariant over specific distributions and parameterizations.
Such theory-driven methodologies (I like the term ‘meta-
theory’ or ‘meta-modeling’ for such approaches), have been
especially prominent and successful in identification of
mental architecture and accordant mechanisms in response
times (e.g., Schweickert, Giorgini, and Dzhafarov (2000) and
Townsend and Wenger (2004)) and featural and dimensional
independence in accuracy (e.g., Ashby and Townsend (1986)
and Kadlec and Townsend (1992)).

11. In the 1970s and beyond, mathematical psychology finally
began to build models capable of handling both accuracy as
well as response times (e.g., Link and Heath (1975) and Ratcliff
(1978)). Yet, for decades our models and most of our data have
been relatively confined to n = 2 stimuli and responses. It is
important both for the basic science as well as applications
in many fields to extend our theories and methodologies to
sizeable values of n for stimuli and responses.

12. In the last decade or so, a number of mathematical psychol-
ogists have played major roles in plowing virgin territory in
model testing (e.g., see the special recent JMP issue on model
selection guest edited by Wagenmakers and Waldorp (2006)
and the slightly older JMP issue edited by Myung et al. (2000).

17 Speaking personally, I have been ‘having a ball’ in the last couple of years, now
that we have a T-3 fMRI machine at IU, interacting not only with neuroscientists,
but also with the physicists and others either helping run and maintain or simply
being attracted to this new technology.
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Some of this work, pioneered in psychology by Myung and col-
leagues, exploits novel concepts from complexity theory and
permits for the first time, model testing to take into account
the ability of a model to account for a wide range of data, apart
from the sheer number of parameters. These new vistas can
not only aid our own field, but help us to aid colleagues from
other fields, such as mentioned in (6) just above.

In closing, I suppose it’s considered rather outré’ to sound like
a cheerleader or NFL coach, but I do hope that each of us can
do something, in addition to our personal research, to make a
contribution to our field. Mathematical psychology has arguably
accelerated the evolution of psychology and allied disciplines into
rigorous sciences many times over their likely progress in its
absence. Let’s nurture and strengthen it.
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